TEORIA DE CAMPOS GRACELI EM


Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 / 
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 / 
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 /
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 / 
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 / 
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

é usado, então as equações de campo de Einstein são chamadas equaç

 


Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

/
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

/
dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }

Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 / 
{  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=

é usado, então as equações de campo de Einstein são chamadas equaç





Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

é usado, então as equações de campo de Einstein são chamadas equaç


 

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

 / 
Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..


  TEOREMA QUÂNTICO FOTÔNICO GRACELI.

dE   ħω  / d ħω =  {ψ  dG ψ  ħω  dE   ħω Iψ  }=

1 / dE   ħω  / d ħω =  {  dG ψ  ħω  dE   ħω I  } [-1]=


 1/ {  + {ψ  ħω me ψ(xt)   ψ(xt)  [-1]=


me é a massa do elétron,
é conhecido como o comprimento de onda de Compton,
θ é o ângulo pelo qual a direção do fóton muda,
h é a constante de Planck, e
c é a velocidade da luz no vácuo.

fazendo as identificações padrão  e , em unidades SI se obtém a forma:

1/  + {  + {ψ  ħω me ψ(xt)   ψ(xt) [-1]=

1/ ./ {  + {ψ  ħω me ψ(xt)   ψ(xt) [-1]=

1 /  / {  + {ψ  ħω me ψ(xt)   ψ(xt) [-1] =


G = operador de Graceli.

[ξ ] [,ς] = INTERAÇÕES DE CAMPOS FUNDAMENTAIS, E OUTROS FENÔMENOS.

[Ϡ ] = ESTADOS DE TODOS OS TIPOS E DENSIDADES E VARIAÇÕES DE ESTADOS.


  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .




  •  



    G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ].

    EψωMom = energia, ondas, fótons, frequência, momentum.

  • EQUAÇÃO GENERALIZADA DE GRACELI.

  • Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..





  •  equação de Graceli.

    1 /   [r  t ].  ψ   - G ψ  = E ψ  [r  t ]. / [ - 1 ]. [-1]





     = número de Avogadro
     = constante de Madelung, relacionada com a geometria do cristal.
     = carga do cátions em unidade eletrostática
     = carga do ânion em unidade eletrostática
     = carga elementar, 1,6022×10−19 C
     = permissividade = 8,8541878176×10−12 F m
     = distância do íon mais próximo em metros
     = expoente de Born, um número entre 5 e 12, determinado experimentalmente pela medida de compressibilidade do sólido ou derivado teoricamente.[3]






  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .




  •  



    G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ].

    EψωMom = energia, ondas, fótons, frequência, momentum.

  • EQUAÇÃO GENERALIZADA DE GRACELI.

  • G ψ  = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..


  • 1 / Eψ ω Mom  [/ ] /  / G ψ  = E ψ  = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..[1-].





  •  equação de Graceli.

    1 /   [r  t ].  ψ   - G ψ  = E ψ  [r  t ]. / [ - 1 ].




    Equação Graceli.

     1 / E =EψωMom   [/ ] /        [-1/ ]         (Joules/mol) [-1]

     = número de Avogadro
     = constante de Madelung, relacionada com a geometria do cristal.
     = carga do cátions em unidade eletrostática
     = carga do ânion em unidade eletrostática
     = carga elementar, 1,6022×10−19 C
     = permissividade = 8,8541878176×10−12 F m
     = distância do íon mais próximo em metros
     = expoente de Born, um número entre 5 e 12, determinado experimentalmente pela medida de compressibilidade do sólido ou derivado teoricamente.[3]



    MECÂNICA GRACELI FOTÔNICA [MECÂNICA DOS FÓTONS].

    ψ ω / c = fóton, ondas, frequência, velocidade da luz.
    h = constante de Planck.
    1 / E = ψ ω / c [-1]
    1 / E = h ω / c [-1]
    1 / m = Eψ ω / c =-1]
    massa = h ω / c
    1 / momentum = m = h ω / c [1]
    momentum = m = ψ ω / c.
    1 / Temperatura = momentum = m = ψ ω / c. [-1]
    1 / entropia = Temperatura = momentum = m = ψ ω / c. [-1]
    entalpia =Temperatura = momentum = m = ψ ω / c.
    1 / tunelamento = Temperatura = momentum = m = ψ ω / c.. [-1]
    radioatividade = Temperatura = momentum = m = ψ ω / c..
    emissões do corpo negro = Temperatura = momentum = m = ψ ω / c..




    ψ ω / c = fóton, ondas, frequência, velocidade da luz.
    h = constante de Planck.

     = m e /c
    ψ = E = ψ ω / c
    = E = h ω / c
    ψ = m = Eψ ω / c
    ψ = massa = h ω / c
    ψ = momentum = m = h ω / c
    ψ = momentum = m = ψ ω / c.
    ψ = Temperatura = momentum = m = ψ ω / c.
    ψ = entropia = Temperatura = momentum = m = ψ ω / c.
    ψ = entalpia =Temperatura = momentum = m = ψ ω / c.
    ψ = tunelamento = Temperatura = momentum = m = ψ ω / c..
    ψ = radioatividade = Temperatura = momentum = m = ψ ω / c..
    ψ = emissões do corpo negro = Temperatura = momentum = m = ψ ω / c..

    Comentários

    Postagens mais visitadas deste blog